Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(12): 8727-8736, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38487899

RESUMO

The practical application of thermoelectric devices requires both high-performance n-type and p-type materials of the same system to avoid possible mismatches and improve device reliability. Currently, environmentally friendly SnTe thermoelectrics have witnessed extensive efforts to develop promising p-type transport, making it rather urgent to investigate the n-type counterparts with comparable performance. Herein, we develop a stepwise optimization strategy for improving the transport properties of n-type SnTe. First, we improve the n-type dopability of SnTe by PbSe alloying to narrow the band gap and obtain n-type transport in SnTe with halogen doping over the whole temperature range. Then, we introduce additional Pb atoms to compensate for the cationic vacancies in the SnTe-PbSe matrix, further enhancing the electron carrier concentration and electrical performance. Resultantly, the high-ranged thermoelectric performance of n-type SnTe is substantially optimized, achieving a peak ZT of ∼0.75 at 573 K with a high average ZT (ZTave) exceeding 0.5 from 300 to 823 K in the (SnTe0.98I0.02)0.6(Pb1.06Se)0.4 sample. Moreover, based on the performance optimization on n-type SnTe, for the first time, we fabricate an all-SnTe-based seven-pair thermoelectric device. This device can produce a maximum output power of ∼0.2 W and a conversion efficiency of ∼2.7% under a temperature difference of 350 K, demonstrating an important breakthrough for all-SnTe-based thermoelectric devices. Our research further illustrates the effectiveness and application potential of the environmentally friendly SnTe thermoelectrics for mid-temperature power generation.

2.
Science ; 383(6688): 1204-1209, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484057

RESUMO

Thermoelectric cooling technology has important applications for processes such as precise temperature control in intelligent electronics. The bismuth telluride (Bi2Te3)-based coolers currently in use are limited by the scarcity of Te and less-than-ideal cooling capability. We demonstrate how removing lattice vacancies through a grid-design strategy switched PbSe from being useful as a medium-temperature power generator to a thermoelectric cooler. At room temperature, the seven-pair device based on n-type PbSe and p-type SnSe produced a maximum cooling temperature difference of ~73 kelvin, with a single-leg power generation efficiency approaching 11.2%. We attribute our results to a power factor of >52 microwatts per centimeter per square kelvin, which was achieved by boosting carrier mobility. Our demonstration suggests a path for commercial applications of thermoelectric cooling based on Earth-abundant Te-free selenide-based compounds.

3.
Nat Commun ; 15(1): 2736, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548785

RESUMO

Optimizing thermoelectric conversion efficiency requires the compromise of electrical and thermal properties of materials, which are hard to simultaneously improve due to the strong coupling of carrier and phonon transport. Herein, a one-pot approach realizing simultaneous second phase and Cu vacancies modulation is proposed, which is effective in synergistically optimizing thermoelectric performance in copper sulfides. Multiple lattice defects, including nanoprecipitates, dislocations, and nanopores are produced by adding a refined ratio of Sn and Se. Phonon transport is significantly suppressed by multiple mechanisms. An ultralow lattice thermal conductivity is therefore obtained. Furthermore, extra Se is added in the copper sulfide for optimizing electrical transport properties by inducing generating Cu vacancies. Ultimately, an excellent figure of merit of ~1.6 at 873 K is realized in the Cu1.992SSe0.016(Cu2SnSe4)0.004 bulk sample. The simple strategy of inducing compositional and structural modulation for improving thermoelectric parameters promotes low-cost high-performance copper sulfides as alternatives in thermoelectric applications.

4.
Adv Mater ; 36(7): e2308353, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37903494

RESUMO

Polymorphism (and its extended form - pseudopolymorphism) in solids is ubiquitous in mineralogy, crystallography, chemistry/biochemistry, materials science, and the pharmaceutical industries. Despite the difficulty of controlling (pseudo-)polymorphism, the realization of specific (pseudo-)polymorphic phases and associated boundary structures is an efficient route to enhance material performance for energy conversion and electromechanical applications. Here, this work applies the pseudopolymorphic phase (PP) concept to a thermoelectric copper sulfide, Cu2- x S (x ≤ 0.25), via CuBr2 doping. A peak ZT value of 1.25 is obtained at 773 K in Cu1.8 S + 3 wt% CuBr2 , which is 2.3 times higher than that of a pristine Cu1.8 S sample. Atomic-resolution scanning transmission electron microscopy confirms the transformation of pristine Cu1.8 S low digenite into PP-engineered high digenite, as well as the formation of (semi-)coherent interfaces between different PPs, which is expected to enhance phonon scattering. The results demonstrate that PP engineering is an effective approach for achieving improved thermoelectric performance in Cu-S compounds. It is also expected to be useful in other materials.

5.
Small ; : e2310306, 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38143297

RESUMO

Bismuth sulfide is a promising thermoelectric material because of its low cost and toxicity; however, its low electrical conductivity limits its thermoelectric properties. In this study, Bi2 S3 +x wt% HfCl4 (x = 0, 0.25, 0.5, 0.75, and 1.0) bulk samples are fabricated using a combination of melting and spark plasma sintering. The microstructures, electronic structures, and thermoelectric properties of the composites are characterized. The results of electronic structure calculations show that doping with HfCl4 produces an impurity energy level that narrows the bandgap and allows the Fermi energy level to enter the conduction band, leading to a favorable increase in carrier concentration. By regulating the HfCl4 doping concentration, the electrical conductivity of the 0.75 wt% doped sample reaches 253 Scm-1 at 423 K and its maximum ZT value is 0.47 at 673 K. Moreover, the sample is compounded with Bi2 S3 nanorods prepared by the hydrothermal method, reducing thermal conductivity by 30% due to the introduction of additional interfaces and pores. This resulted in a final ZT value of 0.61 at 673 K, which is approximately eight times higher than that of pure Bi2 S3 . This step-by-step optimization approach provides a valuable methodology for enhancing the performance of other thermoelectric material systems.

6.
J Am Chem Soc ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922502

RESUMO

The room-temperature thermoelectric performance of materials underpins their thermoelectric cooling ability. Carrier mobility plays a significant role in the electronic transport property of materials, especially near room temperature, which can be optimized by proper composition control and growing crystals. Here, we grow Pb-compensated AgPb18+xSbTe20 crystals using a vertical Bridgman method. A large weighted mobility of ∼410 cm2 V-1 s-1 is achieved in the AgPb18.4SbTe20 crystal, which is almost 4 times higher than that of the polycrystalline counterpart due to the elimination of grain boundaries and Ag-rich dislocations verified by atom probe tomography, highlighting the significant benefit of growing crystals for low-temperature thermoelectrics. Due to the largely promoted weighted mobility, we achieve a high power factor of ∼37.8 µW cm-1 K-2 and a large figure of merit ZT of ∼0.6 in AgPb18.4SbTe20 crystal at 303 K. We further designed a 7-pair thermoelectric module using this n-type crystal and a commercial p-type (Bi, Sb)2Te3-based material. As a result, a high cooling temperature difference (ΔT) of ∼42.7 K and a power generation efficiency of ∼3.7% are achieved, revealing promising thermoelectric applications for PbTe-based materials near room temperature.

7.
Small ; 19(33): e2301382, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086113

RESUMO

Thermal properties strongly affect the applications of functional materials, such as thermal management, thermal barrier coatings, and thermoelectrics. Thermoelectric (TE) materials must have a low lattice thermal conductivity to maintain a temperature gradient to generate the voltage. Traditional strategies for minimizing the lattice thermal conductivity mainly rely on introduced multiscale defects to suppress the propagation of phonons. Here, the origin of the anomalously low lattice thermal conductivity is uncovered in Cd-alloyed Mg3 Sb2 Zintl compounds through complementary bonding analysis. First, the weakened chemical bonds and the lattice instability induced by the antibonding states of 5p-4d levels between Sb and Cd triggered giant anharmonicity and consequently increased the phonon scattering. Moreover, the bond heterogeneity also augmented Umklapp phonon scatterings. Second, the weakened bonds and heavy element alloying softened the phonon mode and significantly decreased the group velocity. Thus, an ultralow lattice thermal conductivity of ≈0.33 W m-1 K-1 at 773 K is obtained, which is even lower than the predicated minimum value. Eventually, Na0.01 Mg1.7 Cd1.25 Sb2 displays a high ZT of ≈0.76 at 773 K, competitive with most of the reported values. Based on the complementary bonding analysis, the work provides new means to control thermal transport properties through balancing the lattice stability and instability.

8.
Nat Commun ; 14(1): 1366, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914654

RESUMO

Crystalline thermoelectrics have been developed to be potential candidates for power generation and electronic cooling, among which SnSe crystals are becoming the most representative. Herein, we realize high-performance SnSe crystals with promising efficiency through a structural modulation strategy. By alloying strontium at Sn sites, we modify the crystal structure and facilitate the multiband synglisis in p-type SnSe, favoring the optimization of interactive parameters µ and m*. Resultantly, we obtain a significantly enhanced PF ~85 µW cm-1 K-2, with an ultrahigh ZT ~1.4 at 300 K and ZTave ~2.0 among 300-673 K. Moreover, the excellent properties lead to single-leg device efficiency of ~8.9% under a temperature difference ΔT ~300 K, showing superiority among the current low- to mid-temperature thermoelectrics, with an enhanced cooling ΔTmax of ~50.4 K in the 7-pair thermoelectric device. Our study further advances p-type SnSe crystals for practical waste heat recovery and electronic cooling.

9.
Nat Commun ; 13(1): 5937, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209153

RESUMO

Great progress has been achieved in p-type SnS thermoelectric compound recently, while the stagnation of the n-type counterpart hinders the construction of thermoelectric devices. Herein, n-type sulfide PbSnS2 with isostructural to SnS is obtained through Pb alloying and achieves a maximum ZT of ~1.2 and an average ZT of ~0.75 within 300-773 K, which originates from enhanced power factor and intrinsically ultralow thermal conductivity. Combining the optimized carrier concentration by Cl doping and enlarged Seebeck coefficient through activating multiple conduction bands evolutions with temperature, favorable power factors are maintained. Besides, the electron doping stabilizes the phase of PbSnS2 and the complex-crystal-structure induced strong anharmonicity results in ultralow lattice thermal conductivity. Moreover, a maximum power generation efficiency of ~2.7% can be acquired in a single-leg device. Our study develops a n-type sulfide PbSnS2 with high performance, which is a potential candidate to match the excellent p-type SnS.

10.
Phys Chem Chem Phys ; 24(39): 24290-24295, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36172840

RESUMO

The hexagonal Bi0.33(Bi6S9)Br intermediate was incorporated to enhance the thermoelectric properties of Bi2S3 by a facile synthesis process. As a result of the increase of carrier concentration caused by Br diffusion doping and the enhancement of phonon scattering caused by pores, point defects, and secondary phase interfaces, a maximum ZT value of 0.64 was achieved at 773 K in Bi2S3 + 5% Bi0.33(Bi6S9)Br. This study provides a strategy for achieving Br doping in the Bi2S3 system by adding the Bi0.33(Bi6S9)Br intermediate alloy, while the nanostructure was maintained in the matrix, which may be also suitable for other thermoelectric materials to obtain higher performance.

11.
Adv Sci (Weinh) ; 9(27): e2203250, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35901493

RESUMO

The recent growing energy crisis draws considerable attention to high-performance thermoelectric materials. n-type bismuth telluride is still irreplaceable at near room temperature for commercial application, and therefore, is worthy of further investigation. In this work, nanostructured Bi2 Te3 polycrystalline materials with highly enhanced thermoelectric properties are obtained by alkali metal Na solid solution. Na is chosen as the cation site dopant for n-type polycrystalline Bi2 Te3 . Na enters the Bi site, introducing holes in the Bi2 Te3 matrix and rendering the electrical conductivity tunable from 300 to 1800 Scm-1 . The solid solution limit of Na in Bi2 Te3 exceeds 0.3 wt%. Owing to the effective solid solution, the Fermi level of Bi2 Te3 is properly regulated, leading to an improved Seebeck coefficient. In addition, the scattering of both charge carriers and phonons is modulated, which ensured a high-power factor and low lattice thermal conductivity. Benefitting from the synergistic optimization of both electrical and thermal transport properties, a maximum figure of merit (ZT) of 1.03 is achieved at 303 K when the doping content is 0.25 wt%, which is 70% higher than that of the pristine sample. This work disclosed an effective strategy for enhancing the performance of n-type bismuth telluride-based alloy materials.

12.
Nanomaterials (Basel) ; 11(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34947737

RESUMO

Varying structure Bi2Te3-based nanocomposite powders including pure Bi2Te3, Bi2Te3/Bi core-shell, and Bi2Te3/AgBiTe2 heterostructure were synthesized by hydrothermal synthesis using Bi2S3 as the template and hydrazine as the reductant. Successful realization of Bi2Te3-based nanostructures were concluded from XRD, FESEM, and TEM. In this work, the improvement in the performance of the rhodamine B (RhB) decomposition efficiency under visible light was discussed. The Bi2Te3/AgBiTe2 heterostructures revealed propitious photocatalytic performance ca. 90% after 60 min. The performance was over Bi2Te3/Bi core-shell nanostructures (ca. 40%) and more, exceeding pure Bi2Te3 (ca. 5%). The reason could be scrutinized in terms of the heterojunction structure, improving the interfacial contact between Bi2Te3 and AgBiTe2 and enabling retardation in the recombination rate of the photogenerated charge carriers. A credible mechanism of the charge transfer process in the Bi2Te3/AgBiTe2 heterostructures for the decomposition of an aqueous solution of RhB was also explicated. In addition, this work also investigated the stability and recyclability of a Bi2Te3/AgBiTe2 heterojunction nanostructure photocatalyst. In addition, this paper anticipates that the results possess broad potential in the photocatalysis field for the design of a visible light functional and reusable heterojunction nanostructure photocatalyst.

13.
Adv Mater ; 33(43): e2103633, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34494316

RESUMO

Pores in a solid can effectively reduce thermal conduction, but they are not favored in thermoelectric materials due to simultaneous deterioration of electrical conductivity. Conceivably, creating a porous structure may endow thermoelectric performance enhancement provided that overwhelming reduction of electrical conductivity can be suppressed. This work demonstrates such an example, in which a porous structure is formed leading to a significant enhancement in the thermoelectric figure of merit (zT). By a unique BiI3 sublimation technique, pore networks can be introduced into tetrahedrite Cu12 Sb4 S13 -based materials, accompanied by changes in their hierarchical structures. The addition of a small quantity of BiI3 (0.7 vol%) results in a ≈72% reduction in the lattice thermal conductivity, whereas the electrical conductivity is improved due to unexpected enhanced carrier mobility. As a result, an enhanced zT of 1.15 at 723 K in porous tetrahedrite and a high conversion efficiency of 6% at ΔT = 419 K in a fabricated segmented single-leg based on this porous material are achieved. This work offers an effective way to concurrently modulate the electrical and thermal properties during the synthesis of high-performance porous thermoelectric materials.

14.
ACS Appl Mater Interfaces ; 13(38): 45589-45599, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34542277

RESUMO

Bi0.42Sb1.58Te3 + x wt % Cu1.8S (x = 0, 0.03, 0.05, and 0.1) bulk materials with enhanced thermoelectric and mechanical properties were fabricated by a solid-state reaction and spark plasma sintering. The thermoelectric properties, such as electrical transport properties and thermal conductivity, are highly dependent on the Cu1.8S content. The highest value of ZT obtained for Bi0.42Sb1.58Te3 with 0.05 wt % Cu1.8S is 1.23 at 373 K, and an optimistic average ZT of 1.2 is achieved at temperatures in the range of 323-448 K, which is 34% higher than that of the pristine sample. The highly enhanced ZT of the doped sample is attributed to the increased electrical conductivity and reduced lattice thermal conductivity caused by the effective element doping and the multiscale phonon scattering by quantities of point defects, twin boundaries, and nanopores. Further, the hardness obtained for this sample is 1.02 GPa, which is increased by 16% in comparison with that of the pristine sample. The conversion efficiency of the doped sample is also significantly higher than that of the pristine sample. Therefore, Cu1.8S is considered to be a promising dopant for enhancing the thermoelectric and mechanical properties of Bi-Sb-Te-based thermoelectric materials.

15.
Inorg Chem ; 60(18): 14165-14173, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34474565

RESUMO

Discovering high-performance near-room-temperature thermoelectric materials is extremely imperative to widen the practical application in thermoelectric power generation and refrigeration. Here, ternary Ag2Se1-xTex (x = 0.1, 0.2, 0.3, 0.4, and 0.5) materials are prepared via the wet-mechanical alloying and spark plasma sintering process to investigate their near-room-temperature thermoelectric properties. From density functional theory calculation and single-parabolic-band modeling study, we found that the reduced contribution of Se 4p orbitals to the total density of states decreases the carrier effective mass with increasing Te content, which should enhance the theoretically maximum zT. These calculation results are also verified by the experimental results. Meanwhile, complex microstructures including dislocations, nanograins, high-density boundaries, TeSe substitution, lattice distortions, and localized strain have been observed in ternary Ag2Se1-xTex. These complex microstructures strengthen phonon scattering and in turn lead to ultralow lattice thermal conductivity in the range of 0.21-0.31 W m-1 K-1 in ternary Ag2Se1-xTex at 300 K. Although the increased deformation potential suppresses the carrier mobility, benefiting from the engineered band structures and ultralow lattice thermal conductivity, a high zT of >1 can be potentially obtained in the ternary Ag2Se1-xTex with appropriate carrier concentration. This study indicates that ternary Ag2Se1-xTex is a promising candidate for near-room-temperature thermoelectric applications.

16.
Inorg Chem ; 60(17): 13269-13277, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34404212

RESUMO

In this study, Cu2Se1-xSx (x = 0.1, 0.3, and 0.5) alloy powders were prepared by the hydrothermal synthesis method. In the subsequent sintering process, the spontaneous in situ phase separation process of the sample forms a two-phase hybrid structure. The generated Cu2S precipitates in the Cu2Se matrix noticeably enhance phonon scattering, which is beneficial for low thermal conductivity without significantly affecting the electrical transport performance. Ultimately, an optimized thermoelectric performance was obtained in Cu2Se0.9S0.1, reaching a peak zT value of 1.43 at 773 K, the optimum value among the Cu-Se-S systems at this temperature.

17.
Front Pharmacol ; 12: 650438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867992

RESUMO

Background: Guan-Xin-Shu-Tong capsule (GXSTC) is a traditional Chinese medicine (TCM) that has been used to treat coronary heart disease (CHD) for many years in China. However, the holistic mechanism of GXSTC against CHD is still unclear. Therefore, the purpose of this paper was to systematically explore the mechanism of action GXSTC in the treatment of CHD rats using a metabolomics strategy. Methods: A CHD model was induced by ligation of the left anterior descending coronary artery (LAD). In each group, echocardiography was performed; the contents of creatine kinase (CK), lactate dehydrogenase (LDH) and aspartate transaminase (AST) in serum were determined; and the myocardial infarct size was measured. The metabolites in plasma were analyzed by UHPLC-MS/MS-based untargeted metabolomics. Then, multivariate statistical analysis was performed to screen potential biomarkers associated with the GXSTC treatment in the LAD-induced rat CHD model. Finally, the MetaboAnalyst 4.0 platform was used for metabolic pathway enrichment analysis. Results: GXSTC was able to regulate the contents of CK, LDH and AST; restore impaired cardiac function; and significantly reduce the myocardial infarction area in model rats. Twenty-two biomarkers and nine metabolic pathways of GXSTC in the treatment of CHD were identified through UHPLC-MS/MS-based untargeted metabolomics analysis. Conclusion: GXSTC regulates metabolic disorders of endogenous components in LAD-induced CHD rats. The anti-CHD mechanism of GXSTC is mainly related to the regulation of amino acid, lipid and hormonal metabolism. This study provides an overall view of the mechanism underlying the action of GXSTC against CHD.

18.
Chem Commun (Camb) ; 57(20): 2555-2558, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585847

RESUMO

A Bi2Te3/Bi2S3@Bi nanocomposite with a network microstructure was successfully synthesized via a hydrothermal method and spark plasma sintering. This composite was constructed from Bi2Te3 nanoparticles and Bi2S3@Bi nanowires, and its network structure is beneficial for obtaining excellent thermoelectric performance. A ZT peak of 1.2 at 450 K was realized for the nanocomposite sample.

19.
Chem Commun (Camb) ; 56(79): 11839-11842, 2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33021269

RESUMO

The n-type hexagonal (Bi(Bi2S3)9)I3)0.667 compound was synthesized by a facile process, a hydrothermal method combined with spark plasma sintering. The thermoelectric properties of the (Bi(Bi2S3)9)I3)0.667 bulk sample were investigated in detail. The results show that a peak ZT value of 0.04 was obtained at 673 K along the perpendicular pressure direction.

20.
RSC Adv ; 9(40): 23029-23035, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35514488

RESUMO

Bi2S3 is an eco-friendly alternative compound for thermoelectric devices. However, the low electrical conductivity of the pristine Bi2S3 hinders the improvement of its ZT value, which further restricts its application in the field of thermoelectricity. In this work, we report the first attempt to optimize the thermoelectric properties of Bi2S3 by electroless nickel plating. A nickel plated Bi2S3 powder sample was synthesized by electroless nickel plating on the precursor Bi2S3 powder prepared by mechanical alloying. Then, the powder was sintered to a bulk material by spark plasma sintering. The relationships between the composition, microstructure and thermoelectric properties of the bulk samples were investigated. The XRD results showed a AgBi3S5 second phase which was formed by the reaction of Ag residues with the Bi2S3 substrate during the sintering process. The nickel element and AgBi3S5 second phase introduced in the nickel plating process directly affect the electronic conductivity and Seebeck coefficient of the nickel plating sample, resulting in the relatively high power factor of 244 µW m-1 K-2 at 628 K. What's more, the thermal conductivity of the sample was also reduced moderately, obtaining a low value of 0.40 µW m-1 K-1 at 628 K. Therefore, a maximum ZT value of 0.38 was obtained at 628 K for the nickel plated sample, which is three times higher than that (0.12 at 628 K) of pristine Bi2S3 materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...